If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+150t+110=(t)
We move all terms to the left:
-16t^2+150t+110-((t))=0
determiningTheFunctionDomain -16t^2+150t-t+110=0
We add all the numbers together, and all the variables
-16t^2+149t+110=0
a = -16; b = 149; c = +110;
Δ = b2-4ac
Δ = 1492-4·(-16)·110
Δ = 29241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{29241}=171$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(149)-171}{2*-16}=\frac{-320}{-32} =+10 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(149)+171}{2*-16}=\frac{22}{-32} =-11/16 $
| 6/5w-6=-4/5w-1/3 | | (14-3c)+7c=0 | | (8y)/20=(35y+81)/20 | | (2y-4)/5=(5y+13)/4+(y)/2 | | F(x)=42-3.75 | | 8y/20=(35y+81)/20 | | F(x)=42-3.75x; | | y^2/5-2y/3=35 | | 5x+1/5=x/3+3 | | 9+7.x=16 | | 117=191-w | | -u+45=175 | | F(0)=7x+15 | | 120-y=215 | | (3x+5)+(2x+25)=x | | 16^+x^=19^ | | (x)/(4)+16=2 | | (1/6.25)=(1/23.9)+(1/y) | | 9u-28=5(u-4) | | 9u-38=5(u-4) | | 15.50-0.07x= | | 18x/2=124 | | x+420=735 | | 3(80-9x)=x-95 | | 4(2x-6=10x-6 | | 12^-3x=7 | | 14x-5+3x-6=14x+10 | | 12x+24=7x+24 | | x+13=4x+40 | | 15x-5-2(3x)=8.5 | | 15x-6x=3.5 | | .5^(x-3)^1/2=1 |